Modulation of Voltage-dependent Properties of a Swelling-activated Cl− Current

نویسندگان

  • Thomas Voets
  • Guy Droogmans
  • Bernd Nilius
چکیده

We used the patch-clamp technique to study the voltage-dependent properties of the swelling-activated Cl- current (ICl,swell) in BC3H1 myoblasts. This Cl- current is outwardly rectifying and exhibits time-dependent inactivation at positive potentials (potential for half-maximal inactivation of +75 mV). Single-channel Cl- currents with similar voltage-dependent characteristics could be measured in outside-out patches pulled from swollen cells. The estimated single-channel slope conductance in the region between +60 and +140 mV was 47 pS. The time course of inactivation was well described by a double exponential function, with a voltage-independent fast time constant (approximately 60 ms) and a voltage-dependent slow time constant (>200 ms). Recovery from inactivation, which occurred over the physiological voltage range, was also well described by a double exponential function, with a voltage-dependent fast time constant (10-80 ms) and a voltage-dependent slow time constant (>100 ms). The inactivation process was significantly accelerated by reducing the pH, increasing the Mg2+ concentration or reducing the Cl- concentration of the extracellular solution. Replacing extracellular Cl- by other permeant anions shifted the inactivation curve in parallel with their relative permeabilities (SCN- > I- > NO3- > Cl- >> gluconate). A leftward shift of the inactivation curve could also be induced by channel blockers. Additionally, the permeant anion and the channel blockers, but not external pH or Mg2+, modulated the recovery from inactivation. In conclusion, our results show that the voltage-dependent properties of ICl,swell are strongly influenced by external pH, external divalent cations, and by the nature of the permeant anion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological and biophysical properties of swelling-activated chloride channel in mouse cardiac myocytes.

The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was ...

متن کامل

Functional and molecular identification of a novel chloride conductance in canine colonic smooth muscle.

Swelling-activated or volume-sensitive Cl- currents are found in numerous cell types and play a variety of roles in their function; however, molecular characterization of the channels is generally lacking. Recently, the molecular entity responsible for swelling-activated Cl-current in cardiac myocytes has been identified as ClC-3. The goal of our study was to determine whether such a channel ex...

متن کامل

Volume-activated chloride currents in interstitial cells of Cajal.

Interstitial cells of Cajal (ICC) undergo marked morphological changes on contraction of the musculature, making it essential to understand properties of mechanosensitive ion channels. The whole cell patch-clamp technique was used to identify and to characterize volume-activated Cl- currents in ICC cultured through the explant technique. Hypotonic solutions (approximately 210 mosM) activated an...

متن کامل

Activation of a voltage-dependent chloride current in human neutrophils by phorbol 12-myristate 13-acetate and formyl-methionyl-leucyl-phenylalanine. The role of protein kinase C.

Calcium-activated, voltage-independent Cl- currents have been demonstrated in human neutrophils (Krause, K.-H., and Welsh, M.J. (1990) J. Clin. Invest. 85, 491-498). The activation is mediated by calcium/calmodulin-dependent protein kinase and not by protein kinase C (PKC) (Schumann, M., Gardner, A.P., and Raffin, T.A. (1993) J. Biol. Chem. 268, 2134-2140). It is not known whether there are Ca(...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1997